X
Design and Verification of Microprocessor Systems
Design and Verification of Microprocessor Systems

Design and Verification of Microprocessor Systems for High-Assurance Applications

Product ID : 35045234


Galleon Product ID 35045234
Shipping Weight 1.52 lbs
I think this is wrong?
Model
Manufacturer Springer
Shipping Dimension 9.25 x 6.1 x 1.02 inches
I think this is wrong?
-
Save 11%
Before ₱ 10,760
9,604

*Price and Stocks may change without prior notice
*Packaging of actual item may differ from photo shown
  • Electrical items MAY be 110 volts.
  • 7 Day Return Policy
  • All products are genuine and original
  • Cash On Delivery/Cash Upon Pickup Available

Pay with

About Design And Verification Of Microprocessor Systems

Microprocessors increasingly control and monitor our most critical systems, including automobiles, airliners, medical systems, transportation grids, and defense systems. The relentless march of semiconductor process technology has given engineers exponentially increasing transistor budgets at constant recurring cost. This has encouraged increased functional integration onto a single die, as well as increased architectural sophistication of the functional units themselves. Additionally, design cycle times are decreasing, thus putting increased schedule pressure on engineers. Not surprisingly, this environment has led to a number of uncaught design flaws. Traditional simulation-based design verification has not kept up with the scale or pace of modern microprocessor system design. Formal verification methods offer the promise of improved bug-finding capability, as well as the ability to establish functional correctness of a detailed design relative to a high-level specification. However, widespread use of formal methods has had to await breakthroughs in automated reasoning, integration with engineering design languages and processes, scalability, and usability. This book presents several breakthrough design and verification techniques that allow these powerful formal methods to be employed in the real world of high-assurance microprocessor system design.