X

Problems for Biomedical Fluid Mechanics and Transport Phenomena (Cambridge Texts in Biomedical Engineering)

Product ID : 20861289


Galleon Product ID 20861289
Model
Manufacturer
Shipping Dimension Unknown Dimensions
I think this is wrong?
-
7,172

*Price and Stocks may change without prior notice
*Packaging of actual item may differ from photo shown

Pay with

About Problems For Biomedical Fluid Mechanics And

Product Description How does one deal with a moving control volume? What is the best way to make a complex biological transport problem tractable? Which principles need to be applied to solve a given problem? How do you know if your answer makes sense? This unique resource provides over two hundred well-tested biomedical engineering problems that can be used as classroom and homework assignments, quiz material and exam questions. Questions are drawn from a range of topics, covering fluid mechanics, mass transfer and heat transfer applications. Driven by the philosophy that mastery of biotransport is learned by practice, these problems aid students in developing the key skills of determining which principles to apply and how to apply them. Each chapter starts with basic problems and progresses to more difficult questions. Lists of material properties, governing equations and charts provided in the appendices make this a fully self-contained work. Solutions are provided online for instructors. Book Description This unique resource offers over two hundred well-tested bioengineering problems for teaching and examinations. Solutions are available to instructors online. Book Description This unique resource offers over two hundred biomedical engineering problems for classroom teaching, homework assignments, quiz material and exam questions. Covering fluid mechanics, mass transfer and heat transfer applications, it helps the student determine which principles to apply and how. Solutions are available to instructors online. About the Author Mark Johnson is Professor of Biomedical Engineering, Mechanical Engineering and Ophthalmology at Northwestern University. He has made substantial contributions to the study of the pathogenesis of glaucoma and of age-related macular degeneration of the retina. His academic interests include biofluid and biotransport issues, especially those related to ocular biomechanics. C. Ross Ethier is the Lawrence L. Gellerstedt, Jr Chair in Bioengineering and a Georgia Research Alliance Eminent Scholar in Biomechanics and Mechanobiology at Georgia Tech and Emory University. His academic interests include cell and tissue biomechanics and mechanobiology. He is co-author of Introductory Biomechanics: From Cells to Organisms as part of the Cambridge Texts in Biomedical Engineering.