X

Energy Storage: Fundamentals, Materials and Applications

Product ID : 18805949


Galleon Product ID 18805949
Model
Manufacturer
Shipping Dimension Unknown Dimensions
I think this is wrong?
-
9,521

*Price and Stocks may change without prior notice
*Packaging of actual item may differ from photo shown

Pay with

About Energy Storage: Fundamentals, Materials And

Product Description Energy Storage explains the underlying scientific and engineering fundamentals of all major energy storage methods. These include the storage of energy as heat, in phase transitions and reversible chemical reactions, and in organic fuels and hydrogen, as well as in mechanical, electrostatic and magnetic systems. Updated coverage of electrochemical storage systems considers exciting developments in materials and methods for applications such as rapid short-term storage in hybrid and intermittent energy generation systems, and battery optimization for increasingly prevalent EV and stop-start automotive technologies. This nuanced coverage of cutting-edge advances is unique in that it does not require prior knowledge of electrochemistry. Traditional and emerging battery systems are explained, including lithium, flow and liquid batteries. Energy Storage provides a comprehensive overview of the concepts, principles and practice of energy storage that is useful to both students and professionals. From the Back Cover Explains the fundamentals of all major energy storage methods, from thermal and mechanical to electrochemical and magnetic Clarifies which methods are optimal for important current applications, including electric vehicles, off-grid power supply, and demand response for variable energy resources such as wind and solar New and updated material focuses on cutting-edge advances including liquid batteries, sodium/sulfur cells, emerging electrochemical materials, natural gas applications and hybrid system strategies This book explains the underlying scientific and engineering fundamentals of all major energy storage methods. These include the storage of energy as heat, in phase transitions and reversible chemical reactions, and in organic fuels and hydrogen, as well as in mechanical, electrostatic and magnetic systems. Updated coverage of electrochemical storage systems considers exciting developments in materials and methods for applications such as rapid short-term storage in hybrid and intermittent energy generation systems, and battery optimization for increasingly prevalent EV and stop-start automotive technologies. This nuanced coverage of cutting-edge advances is unique in that it does not require prior knowledge of electrochemistry. Traditional and emerging battery systems are explained, including lithium, flow and liquid batteries. Energy Storage provides a comprehensive overview of the concepts, principles and practice of energy storage that is useful to both students and professionals.   About the Author Professor Huggins obtained his B.A. in Physics from Amherst College and his M.S. and Sc.D. in Metallurgy from the Massachusetts Institute of Technology.   After serving as an Instructor at MIT, he joined the Stanford faculty, where he initiated the Department of Materials Science and founded Stanford's Center for Materials Research. His career has included a National Science Foundation Fellowship and guest lectureship at the Max-Planck-Institute, as well as terms as Director of Materials Sciences at ARPA, Chief Scientist of the Center for Solar Energy and Hydrogen Research in Ulm, Germany, and Chairman of the Solid State Sciences Committee. He was a member of the Committees on Advanced Energy Storage Systems and Battery Materials Technology of the US National Academy of Sciences and the first President of the International Society for Solid State Ionics. He was also one of the Founders, and later twice a Counselor, of the Materials Research Society. He is Honorary Professor at the University of Ulm and the University of Kiel. Dr. Huggins is recipient of many awards including the American Society for Engineering Education’s Vincent Bendix Award, the Research Award of the Electrochemical Society's Battery Division, and the Research Award of the International Battery Association. His research activities have included studies of imperfections in crystals, solid-state reaction kinetics, fe