X

In Vitro Neuronal Networks: From Culturing Methods to Neuro-Technological Applications (Advances in Neurobiology (22))

Product ID : 44362125


Galleon Product ID 44362125
Model
Manufacturer
Shipping Dimension Unknown Dimensions
I think this is wrong?
-
2,805

*Price and Stocks may change without prior notice
*Packaging of actual item may differ from photo shown

Pay with

About In Vitro Neuronal Networks: From Culturing Methods

Product Description This book provides a comprehensive overview of the incredible advances achieved in the study of in vitro neuronal networks for use in basic and applied research. These cultures of dissociated neurons offer a perfect trade-off between complex experimental models and theoretical modeling approaches giving new opportunities for experimental design but also providing new challenges in data management and interpretation. Topics include culturing methodologies, neuroengineering techniques, stem cell derived neuronal networks, techniques for measuring network activity, and recent improvements in large-scale data analysis. The book ends with a series of case studies examining potential applications of these technologies. From the Back Cover This book provides a comprehensive overview of the incredible advances achieved in the study of in vitro neuronal networks for use in basic and applied research. These cultures of dissociated neurons offer a perfect trade-off between complex experimental models and theoretical modeling approaches giving new opportunities for experimental design but also providing new challenges in data management and interpretation. Topics include culturing methodologies, neuroengineering techniques, stem cell derived neuronal networks, techniques for measuring network activity, and recent improvements in large-scale data analysis. The book ends with a series of case studies examining potential applications of these technologies. About the Author Michela Chiappalone research interests are in the field of Neuroengineering. She obtained a PhD in Electronic Engineering and Computer Science from University of Genova (Italy) in 2003. In 2002 she has been visiting scholar at the Department of Physiology, Northwestern University (Chicago, IL, USA). After a Post Doc at the University of Genova, in 2007 she joined the Neuroscience and Brain Technologies Dept at the Istituto Italiano di Tecnologia (IIT) as a Post Doc. In 2013 she got a group leader position (‘Researcher’) in the same Institution. In 2015 she has been visiting Professor at KUMED (Kansas City, KS, USA), hosted by Prof. R.J. Nudo. From 2012 to 2015 M. Chiappalone has been Coordinator of the FET Open European Project BrainBow, judged excellent. In 2017, M. Chiappalone joined the Rehab Technologies IIT-INAIL Joint Lab of IIT to lead a group aimed at interfacing robotic devices with the nervous system for applications in neuroprosthetics, neuromodulation and neurorehabilitation. In 2018 she got the national scientific habilitation as Full Professor of Bioengineering.She authored 60 papers published in International Journals, 50 peer-reviewed contributions to International Conferences, 8 Book Chapters and she gave more than 60 scientific talks at International/National Conferences and Research Institutions. Valentina Pasquale got the PhD in "Humanoid Technologies" from the University of Genova and Istituto Italiano di Tecnologia in 2010. During PhD, she focused on developing analysis tools to characterize the spontaneous and evoked activity of cortical and hippocampal networks cultured on micro-electrode arrays, seen as a reduced biological model for the generation of coordinated neuronal activity. During post-doc she was involved in neuro-robotics and neuro-prosthetics studies, aimed at understanding how to interface artificial devices (as a small robot or a simulated neural network) and neuronal systems, with the final goal of advancing the design of future brain-machine interfaces and brain prostheses. Currently, she has been working as senior post-doc in Dr. Tommaso Fellin's lab (Optical Approches to Brain Function). Her interests include in vivo studies combining optogenetics and electrophysiology for a deeper understanding of inhibitory interneurons' contribution to the generation and control of sleep waves. She is also involved in the design and development of technological tools for patterned optical stimulation through light