X

Computational Seismology: A Practical Introduction

Product ID : 16095433


Galleon Product ID 16095433
Model
Manufacturer
Shipping Dimension Unknown Dimensions
I think this is wrong?
-
4,156

*Price and Stocks may change without prior notice
*Packaging of actual item may differ from photo shown

Pay with

About Computational Seismology: A Practical Introduction

Product Description This book is an introductory text to a range of numerical methods used today to simulate time-dependent processes in Earth science, physics, engineering, and many other fields. The physical problem of elastic wave propagation in 1D serves as a model system with which the various numerical methods are introduced and compared. The theoretical background is presented with substantial graphical material supporting the concepts. The results can be reproduced with the supplementary electronic material provided as python codes embedded in Jupyter notebooks. The book starts with a primer on the physics of elastic wave propagation, and a chapter on the fundamentals of parallel programming, computational grids, mesh generation, and hardware models. The core of the book is the presentation of numerical solutions of the wave equation with six different methods: 1) the finite-difference method; 2) the pseudospectral method (Fourier and Chebyshev); 3) the linear finite-element method; 4) the spectral-element method; 5) the finite-volume method; and 6) the discontinuous Galerkin method. Each chapter contains comprehension questions, theoretical, and programming exercises. The book closes with a discussion of domains of application and criteria for the choice of a specific numerical method, and the presentation of current challenges. Readers are welcome to visit the author's website www.geophysik.lmu.de/Members/igel for more information on his research, projects, publications, and other activities. Review "It is intended to work as an introductory handbook, containing a coherent balance of theory, concepts and applications, as well as a very rich source of references where to look at if the reader wishes deepening their understanding of what was presented... Unquestionably, it is a valuable and essential book that sets the foundations of this century's computational seismology." -- Contemporary Physics " Computational Seismology is a very timely and readable textbook. ...very well supplemented with numerous figures and photos that help illustrate salient points...Recommended." -- CHOICE "This book has been missing for years and will become an important asset for a broad readership of both students and practitioners in applied and theoretical geophysics. With insightful illustrations, code, practical examples and exercises, the reader will gain insight into the fundamental critical aspects of the wide range of methods used for solving seismic wave equations and problems in its many different disguises." -- Johan Robertsson, Institute of Geophysics, ETH-Zurich, Switzerland "This essential book heralds the era of computational seismology. Any student of modern seismology should master its fundamental knowledge. Fortunately for them, the author makes this easy via this highly readable and educational book full of well-chosen examples and exercises." -- Jeroen Tromp, Princeton University, USA "Heiner Igel provides a broad survey of methods for calculating seismograms, contrasting the benefits and limitations of techniques through applications in 1-D, with indications of how extensions can be made to 3-D. The examples are well chosen and enable students to get a feel for computational procedures and hence understand the more complex packages they may encounter later. The book is to be highly recommended to both those starting in seismology and more established workers who wish to gain a broader understanding of the computational scene." -- Professor Brian L. N. Kennet, The Australian National University "Heiner Igel's book fills an empty slot between books devoted to numerical algorithms and books more oriented to seismological topics. It has arrived at the right moment. Igel overcomes the difficulty of describing methods in a comprehensive way for students and researchers trained in seismology and Earth sciences disciplines while keeping the necessary specific ingredients of these approaches from the point of vie